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ABSTRACT

Recent studies in urban navigation have revealed new demands
(e.g., diversity, safety, happiness, serendipity) for the navigation
services that are critical to providing useful recommendations to
travelers. This exposes the need to design next-generation naviga-
tion services that accommodate these newly emerging aspects. In
this paper, we present a prototype system, namely, EPUI (an Exper-
imental Platform of Urban Informatics), which provides a testbed
for exploring and evaluating venues and route recommendation
solutions that balance between different objectives (i.e., demands)
including the newly discovered ones. In addition, EPUI incorpo-
rates a modularized design, enabling researchers to upload their
own algorithms and compare them to well-known algorithms using
different performance metrics. Its user interface makes it easily
usable by both end-user and experienced researchers.
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1 INTRODUCTION

As mobile computing and GPS technology increasingly becomes
a part of our daily activities, various Points-of-Interest (POIs) or
venue recommendation and route-planning services have been pro-
posed to assist people effectively navigating through a city. Exist-
ing city navigation systems often focus on optimizing well-known
efficiency objectives, such as minimizing the distance covered, max-
imizing the benefit obtained from the route as captured by some
measure of venue quality, and so on (e.g., [11, 12, 17]). As recent
works (e.g., [3, 7, 9, 14]) aim to better understand what constitutes a
true user-centric recommendation and develop novel recommenda-
tion algorithms that better align with the individual user’s interests,
it is critical to have an efficient tool that helps to discover, compare,
converge, and evaluate different aspects and approaches of urban
navigation.

Towards this end, we developed an experimental platform, called
EPUI (Experimental Platform of Urban Informatics), which provides
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a fully customizable framework for urban informatics experimen-
tations. It currently supports the study of different urban navi-
gation approaches. EPUI incorporates many existing approaches
for venues recommendation and route construction as well as op-
timizing structures such as spatial indexing and weighted route
network graphs, which are adjustable by the user. EPUI allows users
to upload their own recommendation algorithms, indexing struc-
tures and evaluation metrics. Its user-friendly front-end interface
enables a user to compare the result of different recommendation
approaches by both presenting the recommended venues and routes
visually on a map as well as displaying evaluation metrics through
summary dashboards.

In addition to being a research tool, EPUI can also be used as a
demonstration platform, capable of providing informative venue
and route recommendations to the audience. In particular, for venue
recommendation, EPUI consider three different aspects relevance,
diversity and serendipity and implements a set of existing recommen-
dation algorithms (e.g., DisC Diversity [6], K-Medoid, PrefDiv [8]
and PageRank). For route constructions, EPUI employs an advanced
route construction algorithm, optimizing multiple simultaneous
objectives (e.g., distance, safety, happiness) [7].

2 SYSTEM & ALGORITHMS
2.1 Back-end Server

The back-end server of EPUI is implemented in Java with a modu-
larized design, which allows the user to customize its components,
including the algorithm and the optimization objectives of both
venue and route recommendation, as well as indexing structures
used for range queries. Below we briefly discuss each of EPUI’s
main components.

Range Queries: One of the main operation in the algorithms im-
plemented is to generate the nearest neighbor set. While several
indexing schemes can be used, the default is the M-tree spatial index
[5]. M-tree is a balanced tree index that is designed to handle a
large scope of multi-dimensional dynamic data in general metric
spaces and it uses the triangle inequality for efficient range queries
similar to those required in EPUL

Ranking: A set of intensity values for the venues to be recom-
mended are defined based on different objectives [9]. For example,
the distance-based intensity I;’ for a venue v can be obtained by
considering the distance d between the current location g of the user
and v. We define a popularity-based intensity I ;,’ by considering
the number of visitations to venue v, while additional popularity
information can be considered using the Page Rank score 75, of
venue v in a venue flow network. We also define a preference-based
intensity I based on a hierarchical user profile.

By combining the above intensity values together, we generate
the venue ranking function I;i 4. Which is a composite function
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of popularity-based intensity, the distance-based intensity and the
preference-based intensity:

I;)’d’u:/1*[(U*I;;)+((1—0')*Is’q]+(1—/1)*Il7j

1)

Diversity: Diversity as a measure of (dis)similarity between two
venues is measured using two similarity distances: a syntactic dis-
tance based on a category structure of venues and a semantic dis-
tance based on the venue name.

Category Tree: Each internal node in the category tree represents
a type of venue, which is a subcategory of the parent node with
each leaf node representing the actual venue. The category tree
is currently built to capture the category structure of venues in
Foursquare (the largest open venue database to date), but it can
evolve to include new venues from other sources as well.

Word2Vec: Although the category tree is able to measure the sim-
ilarity between two venues, this measurement is not very accurate
as it cannot distinguish the difference between two venues that are
under the same subcategory. In order to overcome this limitation,
we utilize the Word2Vec framework [13] and store all the word
vectors in memory as a hash map for efficient querying.

Combine both Category Tree and Word2Vec, we have the seman-
tic distance function Sim(v;,v;) for a given pair of venues v; and
v;j that measures the semantic distance between two given venues,
which is essential for constructing a semantically diverse set of
recommendations:

@)

where ;im (vi,vj) is the semantic distance generated by the cat-
ree

Sim(v;,vj) = a * Sim (v;,v5) + (1 — a) * Sim(A, B)
Tree Vec

egory tree, .?/igrct(A,B) is the semantic distance generated by the

Word2Vec, A and B capture the vector representation of venues v;
and v; respectively, and « is a tunable parameter that controls the
weights between the category tree and Word2Vec.

Serendipity: We incorporated serendipity within our recommen-
dation algorithms thru some form of randomization.

Serendipity of Venues: To achieve serendipity of venues, we de-
signed a probabilistic version of the PrefDiv algorithm [8], namely,
pPrefDiv that introduces randomness in the selection of venues to
incorporate the serendipity. Particularly, pPrefDiv differs from Pref-
Div in the following fashion: when a venue x is qualified to be one
of the recommendations for a range query g under PrefDiv, instead
of including x into the result set, pPrefDiv decides whether x can
be added to the result by using the combined intensity value of x
as the way to determine its acceptance, such that the probability of
a venue x being accepted is:

I(x)

Argmax;.y I1(i) ©®)

p(x is accepted) =
where I(x) is the combined intensity value of I;’, I;,’ and I of a
venue x, and V is the set of all venues within q. If x is accepted, it
would be presented as one of the recommendation. Otherwise, x will
be discarded and pPrefDiv would proceed to the next venue. Such
strategy allows pPrefDiv to incorporate the serendipity into the
venue recommendations, while still preserving the high-intensity
value and semantic distance feature of the PrefDiv algorithm.
Serendipity of Routes: The algorithms described above provide a
discrete set of venues that are both relevant to user’s interests as
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well as semantically diverse with respect to each other. In order to
support the recommendation of routes for k venues, where k is a
user-defined variable, we utilize random walks [10] to generate a
set of initial routes SR. To construct a useful route recombination
with serendipity each candidate routes of SR will be evaluated with
respect to user’s preferred optimization criteria.

Multi-objective Routing To support construction of routes that
go beyond just the shortest distance, our EPUI employs a route
network of each supported city and models it as a weighted directed
graph G = (V,E). The nodes of the graph V, represent intersec-
tions, while the edges E, represent the road segments that connect
intersections. The direction of the road is used to determine the
accessibility of the transportation mode that a user utilizes (e.g., car,
bicycle, walking). We extract such road network from a city using
a crowdsourcing-based open platform call OpenStreetMap [1].

When providing route recommendations, EPUI first relies on the
specified routing methods (e.g., HighestRelevance, Random Walk)
to determine the sequence that each venue should be visited. Based
on the visiting sequence of each venue, EPUI utilizes G to produce
the actual route that concatenates each venue. In particular, EPUI
relies on the weighted edges e € E to determine the actual path that
the user would take when traveling from one venue to the next.
In our route network graph G, each road segment e € E can be
associated with up to two (unrelated) types of user-defined weights.
This allows advanced users (e.g., researchers) to exploit the route
network graph module of EPUI to construct route recommendations
that are optimized towards one or more aspects of the city (e.g.,
length, safety, happiness). To enable such user-defined weights,
EPUI utilizes a modularized design that facilitates the assignment
of the user-defined weights to each edge e of G. Consequently,
to produce routes that are optimized towards the user’s desired
optimization criteria, users can specify function f(e) that returns
a weight w € R* for each edge e. Note that currently up to two
criteria may be specified simultaneously, and in such case a bi-
criteria optimization problem would be formulated. However, this
can be easily extended to multiple ones to include for example
safety, happiness and trajectory preference, either derived from
user behavior [4, 18], or explicitly specified [15, 16].

Serendipity without threats As an illustration, we integrated
our serendipity-based navigation with the Safe Path navigation [7].
More specifically, EPUI provides length, denoted by i(e), and risk,
denoted by r(e), as two examples of the user-defined weights to
be assigned to each edge of G. The length of e simply represents
the actual distance between the two intersections connected by
the associated road segment, and the risk can be interpreted as the
probability of a crime being committed on that segment.

We further adopted Safe Path’s risk model for the urban road
network that assigns a risk score r to each edge that is proportional
to the probability of a crime happening on the corresponding street
segment. To assign the risk score r on each route segment e we
make use of open crime data made available by the city govern-
ments (e.g., [2]). To obtain the risk scores/model we first extract
a sample set of discrete latitude/longitude points from the route
segment denoted as I'(e), which essentially provides information
about the actual geographic shape of the street segment. Then, we
use the geographic coordinates of the crime incidents to compute
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a spatial density for the criminal activity by applying a Gaussian solution space and provide different levels of trade-offs between
kernel density estimation (KDE). Given n points of crime incidents the two objectives as the final recommendation. By enabling users
c1,¢2,...,cxn on a 2-dimensional plane, the Gaussian kernel estimates to specify their own user-defined weights, EPUI allows users to for-
the density of criminal activity at point p as: mulate both single-objective and bi-criteria optimization problem
n . 2 with various aspects of the city.
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nh? & o P 2h2 2.2 Front-end Application

The front-end is constructed from javascript and PHP with the help
of Google Maps API for visualizing the results on a map. It com-
municates with the back-end server through JSON, and currently
supports the cities of New York, San Francisco and Pittsburgh. The
recommended venues or POIs are numbered and colored to match
the number and the color of the algorithm making the recommen-
dation, along with different provisions to drive or walk to those
recommendations. The interface consists of five different panels:
“Input", “Profile", “Algorithms", “Path" and “Analysis" (Figs. 1-3).
The “Input” panel provides the options for the user to specify the
inputs that describe the basic information for each query, such as
the radial distance they are willing to travel, the number of venues
they would like to get returned, and the types of venues they are

where ||¢; — P||§ is the Euclidean distance between points c¢; and p
and h is the bandwidth used. The bandwidth h dictates the spread
of the Gaussian kernel that is centered at each data point and hence,
it controls the smoothness of the estimated density.

Once the density of criminal activity of one point is estimated,
we evaluate it on the actual road segments. For this purpose, we
make use of the geometry I'(e) of each edge e of the road network.
Evaluating Eq. (1) on every point ¢ € I'(e) and summing up we
obtain the crime activity density A(e) on road segment e, such that
A(e) = Xg;er(e) A(&i). Here, A(e) is proportional to the probability
of observing a crime incident on edge e. Thus, we compute the risk
weights for every edge e is computer as the normalized densities:

re) = Ae) (5) interested in exploring (Fig. 1).

YereG M) The “Profile" panel provides the options for the user to specify
Having both length and risk as two independent weights on G their own preferences by selecting any of the predefined profiles
allows the formulation of a bi-criteria optimization problem, where (i.e., ArtLover, FoodLover, OutdoorsLover, etc.) (Fig. 2), or to cus-
the goal is to minimize both the length and the risk of the reported tomize a selected preference profile by adjusting the values on the

path. To effectively solve such bi-criteria optimization problem, corresponding entry of the category tree.
EPUI utilizes the state-of-the-art algorithms from [7] to determine The “Algorithms" panel (Fig. 3) allows users to choose, customize
the Pareto Front for the risk vs. distance trade-off and obtain a small and upload the recommendation algorithm(s) that would be in-
set of non-dominated paths that summarize the (potentially infinite) volved in the location query. To upload an algorithm, EPUI simply
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requires the user to providing the name and the corresponding
template java program, and then it will be include in the algorithms
list along with other existing algorithms. For each algorithm, the
user has an option for adjusting the composition of the ranking (Eq.
1) and semantic distance (Eq. 2) function.

The “Analysis" panel visualizes the performance characteristics
of the recommended venues from the selected algorithms in tabular
form as well as in a scatterplot. The listed characteristics in terms
of quality are the relevance score of the recommended venues, their
diversity and the radius of gyration for each set of the recommended
venues. We also report the run time taken for each algorithm as an
indicator of interactivity.

The “Path” panel (Fig. 4) allows users to select the construc-
tion method of the routes based on sets of recommended venues
and a route network graph G. Once a route construction method
has been selected, it would determine the visit sequence of each
recommended venues. Later the route that connects each venue
(according to the specified sequence) would be constructed based
on the weights assigned on G. Furthermore, users is able to assign
any weights to the edges of G by upload their customized weight
modules as well as specify their desired trade-off between weights
that are currently assigned to each edge of G. Finally, this panel
also includes a statistics table that would display basic informations
(e.g., originate, destination) or evaluation measures (e.g., distance,
risk, relevance, diversity) according to user’s configuration.

3 DEMONSTRATION PLAN

During the demonstration, we run the front-end interface of the
system on one or more laptops, while the backend is hosted on a
remote server. The participants are given the opportunity to interact
with the application as an experimental researcher. We demonstrate
exactly how the user is able to play this role.

During the demonstration, attendees are able to initiate a loca-
tion range query by entering their desired coordinates (longitude
and latitude) in the respective fields or by dragging the location
marker to the specified location on the map. Attendees can use
the “Input” panel to provide additional information for their query
(Fig. 1). Once the query has been defined attendees can then use
the “Profile” panel to specify their preference for the query (Fig. 2).
In the “Algorithm" panel attendees can choose one or more algo-
rithms among the different ones currently implemented. Once the
algorithms for the experiment are chosen, they can submit the POIs
recommendation query for execution by clicking the Run button
in the “Algorithms" panel. The POIs returned as results are being
visualized on the map with color-coded location markers based on
the algorithm used for making the recommendation (See Fig. 4).
After the results are plotted, through the “Path" panel, the end user
would have the options to construct tours (i.e., routes) based on
the recommended venues with various of objectives (e.g., distance,
relevance, serendipity, safety).

Furthermore, attendees can experience EPUT’s ability to explore
and compare the trade-offs between different parameter configura-
tions and recommendation algorithms. As mentioned previously in
Sec. 2, EPUI provides a higher level of customizability that allows
researchers to explore different venue recommendation and route
construction approaches. For instance, after attendees select a set
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of algorithms that would be involved in the query, these selected
algorithms would be displayed in a table beneath the algorithm
selection menu. (as shown in Fig. 3). For each algorithm, attendees
can adjust the composition of the ranking (Eq. 1) and the semantic
distance (Eq. 2) by changing the parameter that defines the weights
of each component of both functions for that specific algorithm.
These tunable parameters provide attendees with the ability to
explore and perform sensitivity analysis over different relevance
and diversity configurations. Attendees can also experience the
benefit of EPUI's modularized design through the integration of
new venues recommendation algorithms that are not originally
supported by EPUL

In addition, researchers can take advantages of advanced fea-
tures mentions in Sec. 2, such as the venue sub-categories, result
dashboard and scatterplots that enables further customization and
exploration. Once the set of recommended venues have been ob-
tained, attendees would have the option to customize the route
construction method to obtain routes that suit their preferences.
Specifically, they would be able to select one or more aspects (e.g.,
distance, relevance, diversity, serendipity, and safety) as the opti-
mizing criteria to produce routes that are optimized towards these
selected objectives.
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